Memory-Efficient Clustering Algorithms for Microarray Gene Expression Data
نویسندگان
چکیده
1 Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan 2 Department of Informatics, Graduate School of Information Science and Electrical Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan 3 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 6110011, Japan 4 Center for Computational Biology and Bioinformatics, Columbia University, 1130 St Nicholas Avenue, New York, NY 10032, USA
منابع مشابه
Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملData Complexity in Clustering Analysis of Gene Microarray Expression Profiles
The increasing application of microarray technology is generating large amounts of high dimensional gene expression data. Genes participating in the same biological process tend to have similar expression patterns, and clustering is one of the most useful and efficient methods for identifying these patterns. Due to the complexity of microarray profiles, there are some limitations in directly ap...
متن کاملبه کارگیری روشهای خوشهبندی در ریزآرایه DNA
Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...
متن کاملExpression Profiling of Microarray Gene Signatures in Acute and Chronic Myeloid Leukaemia in Human Bone Marrow
Background Classification of cancer subtypes by means of microarray signatures is becoming increasingly difficult to ignore as a potential to transform pathological diagnosis nonetheless, measurement of Indicator genes in routine practice appears to be arduous. In a preceding published study, we utilized real-time PCR measurement of Indicator genes in acute lymphoid leukaemia (ALL) and acute m...
متن کاملبه کارگیری خوشهبندی دوبعدی با روش «زیرماتریسهای با میانگین- درایههای بزرگ» در دادههای بیان ژنی حاصل از ریزآرایههای DNA
Background and Objective: In recent years, DNA microarray technology has become a central tool in genomic research. Using this technology, which made it possible to simultaneously analyze expression levels for thousands of genes under different conditions, massive amounts of information will be obtained. While traditional clustering methods, such as hierarchical and K-means clustering have been...
متن کامل